As it turns out, the video card wars are going to charge into 2019 quite a bit hotter than any of us were expecting. Moments ago, as part of AMD’s CES 2019 keynote, CEO Dr. Lisa Su announced that AMD will be releasing a new high-end, high-performance Radeon graphics card. Dubbed the Radeon VII (Seven), AMD has their eyes set on countering NVIDIA’s previously untouchable GeForce RTX 2080. And, if the card lives up to AMD’s expectations, then come February 7th it may just as well do that.

Today’s announcement is interesting in that it’s just as much about technology as it is the 3D chess that is the market positioning fights between AMD and NVIDIA. Technically AMD isn’t announcing any new GPUs here – regular readers will correctly guess that we’re talking about Vega 20 – but the situation in the high-end market has played out such that there’s now a window for AMD to bring their cutting-edge Vega 20 GPU to the consumer market, and this is a window AMD is looking to take full advantage of.

At a high level then, the Radeon VII employs a slightly cut down version of AMD’s Vega 20 GPU. With 60 of 64 CUs enabled, it actually has a few less CUs than AMD’s previous flagship, the Radeon RX Vega 64, but it makes up for the loss with much higher clockspeeds and a much more powerful memory and pixel throughput backend. As a result, AMD says that the Radeon VII should beat their former flagship by anywhere between 20% and 42% depending on the game (with an overall average of 29%), which on paper would be just enough to put the card in spitting distance of NVIDIA’s RTX 2080, and making it a viable and competitive 4K gaming card.

AMD Radeon Series Specification Comparison
  AMD Radeon VII AMD Radeon RX Vega 64 AMD Radeon RX 590 AMD Radeon R9 Fury X
Stream Processors 3840
(60 CUs)
4096
(64 CUs)
2304
(36 CUs)
4096
(64 CUs)
ROPs 128
64
64 32 64
Base Clock ? 1247MHz 1469MHz N/A
Boost Clock 1800MHz 1546MHz 1545MHz 1050MHz
Memory Clock 2.0Gbps HBM2 1.89Gbps HBM2 8Gbps GDDR5 1Gbps HBM
Memory Bus Width 4096-bit 2048-bit 256-bit 4096-bit
VRAM 16GB 8GB 8GB 4GB
Single Precision Perf. 13.8 TFLOPS 12.7 TFLOPS 7.1 TFLOPS 8.6 TFLOPS
Board Power 300W? 295W 225W 275W
Manufacturing Process TSMC 7nm GloFo 14nm GloFo/Samsung 12nm TSMC 28nm
GPU Vega 20 Vega 10 Polaris 30 Fiji
Architecture Vega
(GCN 5)
Vega
(GCN 5)
GCN 4 GCN 3
Transistor Count 13.2B 12.5B 5.7B 8.9B
Launch Date 02/07/2019 08/14/2017 11/15/2018 06/24/2015
Launch Price $699 $499 $279 $649

Diving into the numbers a bit more, if you took AMD’s second-tier Radeon Instinct MI50 and made a consumer version of the card, the Radeon VII is almost exactly what it would look like. It has the same 60 CU configuration paired with 16GB of HBM2 memory. However the Radeon VII’s boost clock is a bit higher – 1800MHz versus 1746MHz – so AMD is getting the most out of those 60 CUs. Still, it’s important to keep in mind that from a pure FP32 throughput standpoint, the Vega 20 GPU was meant to be more of a sidegrade to Vega 10 than a performance upgrade; on paper the new card only has a 9% compute throughput advantage. So it’s not on compute throughput where Radeon VII’s real winning charm lies.

Instead, the biggest difference between the two cards is on the memory backend. Radeon Vega 64 (Vega 10) 2 HBM2 memory channels running at 1.89Gbps each, for a total of 484GB/sec of memory bandwidth. Radeon VII (Vega 20) doubles this and then some to 4 HBM2 memory channels, which also means memory capacity has doubled to 16GB. And then there’s the clockspeed boost on top of this to 2.0Gbps for the HBM2 memory. As a result Radeon VII has a lot memory bandwidth to feed itself, from the ROPs to the stream processors. Given these changes and AMD’s performance estimates, I think this lends a lot of evidence to the idea that Vega 10 was underfed – it needed more memory bandwidth keep its various processing blocks working at full potential – but that’s something we’ll save for the eventual review.

Past that, as this is still a Vega architecture product, it’s the Vega we all know and love. There are no new graphical features here, so even if AMD has opted to shy away from putting Vega in the name of the product, it’s going to be comparable to those parts as far as gaming is concerned. The Vega 20 GPU does bring new compute features – particularly much higher FP64 compute throughput and new low-precision modes well-suited for neural network inferencing – but these features aren’t something consumers are likely to use. Past that, AMD will be employing some mild product segmentation here to avoid having the Radeon VII cannibalize the MI50 – the Radeon VII does not get PCIe 4.0 support, nor does it get Infinity Link support –

The other wildcard for the moment is TDP. The MI50 is rated for 300W, and while AMD’s event did not announce a TDP for the card, I fully expect AMD is running the Radeon VII just as hard here, if not a bit harder. Make no mistake: AMD is still having to go well outside the sweet spot on their voltage/frequency curve to hit these high clockspeeds, so AMD isn’t even trying to win the efficiency race. Radeon VII will be more efficient than Radeon Vega 64 – AMD is saying 25% more perf at the same power – but even if AMD hits RTX 2080’s performance numbers, there’s nothing here to indicate that they’ll be able to meet its efficiency. This is another classic AMD play: go all-in on trying to win on the price/performance front.

Accordingly, the Radeon VII is not a small card. The photos released show that it’s a sizable open-air triple fan cooled design, with a shroud that sticks up past the top of the I/O bracket. Coupled with the dual 8-pin PCIe power plugs on the rear of the card, and it’s clear AMD intends to remove a lot of heat. Both AMD and NVIDIA have now gone with open-air designs for their high-end cards on this most recent generation, so it’s an interesting development, and one that favors AMD given their typically higher TDPs.

Vendor performance claims should always be taken with a grain of salt, but for the moment this is what we have. If AMD manages to reach RTX 2080 performance, then I expect this to be another case of where the two cards are tied on average but are anything but equal; there will be games where AMD falls behind, games where they do tie the RTX 2080, and then even some games they pull ahead in. These scenarios are always the most interesting for reviewers, but they’re also a bit trickier for consumers since it means there’s no clear-cut winner.

All told then, the competitive landscape is going to be an interesting one. AMD’s own proposition is actually fairly modest; with a $699 price tag they’re launching at the same price as the RTX 2080, over four months after the RTX 2080. They are presumably not going to be able to match NVIDIA’s energy efficiency, and they won’t have feature parity since AMD doesn’t (yet) have its own DirectX Raytracing (DXR) implementation.

But what AMD does have, besides an at least competitive price and presumably competitive performance in today’s games, is a VRAM advantage. Whereas NVIDIA didn’t increase their VRAM amounts between generations, AMD is for this half-generation card, giving them 16GB of VRAM to RTX 2080’s 8GB. Now whether this actually translates into a performance advantage now or in the near future is another matter; AMD has tried this gambit before with the Radeon 390 series, where it didn’t really pay off. On the other hand, the fact that NVIDIA’s VRAM capacities have been stagnant for a generation means that AMD is delivering a capacity increase “on schedule” as opposed to ahead of schedule. So while far from guaranteed, it could work in AMD’s favor. Especially as, given the performance of the card, AMD intends for the Radeon VII to be all-in on 4K gaming, which will push memory consumption higher.

Finally on the gaming front, not content to compete on just performance and pricing, AMD will also be competing on gaming bundles. The Radeon VII will be launching with a 3 game bundle, featuring Resident Evil 2, Devil May Cry 5, and The Division 2. NVIDIA of course launched their own Anthem + Battlefield V bundle at the start of this week, so both sides are now employing their complete bags of tricks to attract buyers and to prop up the prices of their cards.

Speaking of pricing, perhaps the thing that surprises me the most is that we’re even at this point – with AMD releasing a Vega 20 consumer card. When they first announced Vega 20 back in 2018, they made it very clear it was going to be for the Radeon Instinct series only. That the new features of the Vega 20 GPU were better suited for that market, and more importantly as a relatively large chip (331mm2) for this early in the life of TSMC’s 7nm manufacturing node, yields were going to be poor.

So that AMD is able to sell what are admittedly defective/recovered Vega 20s in a $699 card, produce enough of them to meet market demand, and still turn a profit on all of this is a surprising outcome. I simply would not have expected AMD to get a 7nm chip out at consumer prices this soon. All I can say is that either AMD has pulled off a very interesting incident of consumer misdirection, or the competitive landscape has evolved slowly enough that Vega 20 is viable where it otherwise wouldn’t have been. Or perhaps it’s a case of both.

Shifting gears for a second, while I’ve focused on gaming thus far, it should be noted that AMD is going after the content creation market with the Radeon VII as well. This is still a Radeon card and not a Radeon Pro card, but as we’ve seen before, AMD has been able to make a successful market out of offering such cards with only a basic level of software developer support. In this case AMD is expecting performance gains similar to the gaming side, with performance improving the more a workload is pixel or memory bandwidth bound.

Wrapping things up, the Radeon VII will be hitting the streets on February 7th for $699. At this point AMD has not announced anything about board partners doing custom designs, so it looks like this is going to be a pure reference card launch. As always, stay tuned and we should know a bit more information as we get closer to the video card’s launch date.

Comments Locked

201 Comments

View All Comments

  • mode_13h - Wednesday, January 9, 2019 - link

    But this was expected. Turing was made as a consumer product, while Vega 20 was made for enterprise/cloud.

    It's a little like why the Titan V is bigger, more expensive, less function (no RT cores) and yet still a bit slower than the RTX 2080 Ti, even though they're on the same process node.
  • mapesdhs - Thursday, January 10, 2019 - link

    Good lord, are you serious?? :D Turing is not in any way a consumer product. It's just the table scraps from the compute market packaged up with some flimflam & b.s. marketing to sell to gamers who are too NPC minded to realise they're being duped up the wazoo (we've seen how the PR was fake, the months with no RTX, the terrible performance, the speedup only achieved by reducing amount of raytracing, and who cares in such a grud awful game as BF5 anyway). These are not *gaming* cards, they're compute dies that didn't make the pass for Enterprise.
  • mode_13h - Thursday, January 10, 2019 - link

    Yes, I'm serious. Turing doesn't have the raw fp64 throughput or HBM2 of their big HPC chips.
  • Targon - Wednesday, January 9, 2019 - link

    What would be interesting would be if card makers release these Radeon 7 cards in an 8GB configuration to drop the price. I'm not sure how much of an improvement in performance we would see with that jump from 8GB to 16GB, so it might just increase the cost without much of an improvement in performance for MOST people.
  • mode_13h - Thursday, January 10, 2019 - link

    Well, if you look at the gaming performance increase, it's a lot more than the ratio of fp32 compute. That strongly suggests most of the benefit is from more than doubling the memory bandwidth.

    If you cut down the memory back to 8 GB, then you'd probably be left with something that performs almost the same as Vega 64, but a bit more power-efficient. Probably still not as efficient as a GTX 1080, however. And the large die will probably still impose a fairly high price floor. Using cloud/HPC-oriented GPUs for consumers is never going to be a cost-effective solution.

    The better solution would be if AMD has some kind of scalable, multi-die solution with Navi.
  • iwod - Thursday, January 10, 2019 - link

    100 Comment and not a single comment on Why VEGA 20 for Gamers.

    I doubt it was AMD trying to counter RTX2080 and made the move, it was simply AMD had a choice. TSMC will likely not be fully utilising their 7nm Fab capacity now and in the months to come, none of the other 7nm players around have the demand. So AMD is likely taking this advantage and might as well lunch their 7nm GPU to consumers.
  • shompa - Sunday, January 13, 2019 - link

    And the real reason is: These chips are harvested chips from the full working die. So let's sell them instead of scrapping them. It's not about TSMC have excess 7nm wafer starts. It does not work like that. AMD bought X amount of wafer starts since other companies have priority, the only thing that happens to AMD is that their ordered wafer starts are filled quicker.
  • crotach - Thursday, January 10, 2019 - link

    If this results in a price drop of 2080 RTX then it's already an achievement. The GPU market badly needs competition.
  • mapesdhs - Thursday, January 10, 2019 - link

    Only if people actually buy the AMD product. If the response is to simply buy the NVIDIA card, as so many want to do, then this market will die a death of innovation for years just like the CPU market did. People who take advantage of new AMD products as a route to a cheaper NVIDIA product are sustaining the market stagnation in GPU tech we've already seen result in the overpriced RTX line. This is why AMD's new card won't sell well, it needs to be far cheaper to attain both market share and mind share; it has to break past the consumer and tech media NPC mindset, and that isn't going to happen with price parity, especially not if there's any kind of power/heat/noise element people can yell about (even if they never moan when NVIDIA acts the same way, or actually promote AMD when they have a product that doesn't have such issues).

    AMD needs something that's a huge amount cheaper than NVIDIA to really get some talk going on forums and tech sites, and that isn't going to happen with anything targeting upper RTX; NVIDIA can simply lower its prices in response, it has plenty of existing overpriced margin with which to do so. AMD needs a pricing gap large enough so that NVIDIA dropping its price to match would make people instantly understand how much they were previously being ripped off. This is a battle that needs to play out first in the mid range, what was the 1060 market (for that there's Navi). AMD can't win this struggle at the high end. I really don't understand why they're trying to do this, it isn't going to work.
  • BenSkywalker - Thursday, January 10, 2019 - link

    You want to avoid the death of innovation by encouraging people to buy the rehash of old tech that wasn't good to begin with over the product that is being lamented for having too much innovation?

    All of the higher end parts are priced outside of where we would like them, I get that, trying to champion AMD support in the name of innovation seems comically out of touch with reality in the GPU sector.

    If you want absolutely zero innovation, you just hate it with every fibre of your being, this is your graphics card. Without question.

Log in

Don't have an account? Sign up now