AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The ADATA Ultimate SU750 comes in last place for overall performance on The Destroyer. The slower tier of drives also includes the QLC-based Samsung 860 QVO, the DRAMless Toshiba TR200 and the older, smaller SU800. The mainstream SATA drives with TLC NAND and full-size DRAM caches are about twice as fast overall as the DRAMless SU750.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The latency scores for the SU750 aren't as bad as the average data rate score. The SU750 is still clearly much slower than the mainstream SATA drives whether you look at the average latency or the 99th percentile latency, but in either case some of the other low-end SATA drives manage to score significantly worse.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The SU750 is essentially tied for last place for average read latency, though the TR200 and the smaller SU800 aren't much better. For average write latency, the SU750 ends up scoring better than the other entry-level drives, including the Intel 660p NVMe/QLC drive.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The Toshiba TR200 clearly beats the SU750 for QoS of read operations, but at the cost of having by far the worst 99th percentile write latency. The SU750 avoids being such an outlier and its QoS scores for both reads and writes are typical for an entry-level drive—and worse than any of the mainstream SATA drives.

ATSB - The Destroyer (Power)

Very slow drives have to keep sucking down power for a longer period of time before completing The Destroyer, so their total energy usage usually ends up being higher than that of faster drives. In this batch of drives, the ADATA SU750 is second only to the 860 QVO for high energy consumption, with both requiring at least 50% more energy than the mainstream SATA drives.

Cache Size Effects AnandTech Storage Bench - Heavy
Comments Locked

54 Comments

View All Comments

  • Billy Tallis - Saturday, December 7, 2019 - link

    SSDs need to keep track of what physical location each logical block address is stored at. This info changes constantly because flash memory needs wear leveling, and this info needs to be accessed for every read or write operation the host system issues. Most SSDs use a flash translation layer that deals with 4kB chunks, which means the full address mapping table requires 1GB for each 1TB of storage. Mainstream SSDs use DRAM to hold this table, because it's much faster than doing an extra flash read before each read or write operation can be completed. DRAMless SSDs can cache a small portion of that table (typically a few MBs or tens of MBs) within the controller itself or using the NVMe Host Memory Buffer feature.

    DRAMless SSDs can work as a boot drive, but they're slower than mainstream drives that have the full 1GB per 1TB DRAM buffer.
  • PaulHoule - Tuesday, December 10, 2019 - link

    The block size of an SSD is usually larger than the block size presented to the OS. The SSD can only erase a large group of blocks at once, so it has a flash translation layer that needs to keep track of things like "Block X seen by the OS is really stored in Subblock Y of Physical Block Z". It has to access that data every time it reads or writes, so it helps for that data to be in DRAM.

    DRAM is also good for write caching; under ordinary circumstances it is a big performance win to buffer writes to RAM before you really do them so you can bundle writes so the SSD can do them efficiently.

    Current DRAMless SSDs keep the lookup tables on the SSD itself, which is slower than RAM.

    There is a standard for an NVMe device to steal some RAM from the host, which might be a good option. Also there is a standard for NVMe zoned namespaces which would let the host manage the drive more directly, put that together with a revolution in the OS and you could get something which is simple, high performance, and cheap, but that revolution is happening in the data center now, not at the client.
  • Goodspike - Saturday, December 7, 2019 - link

    What's with these brand names?

    To me Adata means no data. Sandisk means without disk. These are not good names for storage devices!
  • Gills - Saturday, December 7, 2019 - link

    Realtek abandoned me on Windows 10 sound drivers for the many Toshiba POS terminals I'm tasked with updating from Windows XP and 7, so I'm not jumping onboard with anything they do anytime soon.
  • supdawgwtfd - Saturday, December 7, 2019 - link

    So going from one unsupported EOL O/S to another soon to be?

    That doesn't seem like good management.
  • Gills - Saturday, December 7, 2019 - link

    Worded that poorly, sorry - we're upgrading everything to Windows 10.
  • FunBunny2 - Saturday, December 7, 2019 - link

    "So going from one unsupported EOL O/S to another soon to be?

    That doesn't seem like good management."

    spend some time as the 'IT manager' at any small business; this sort of driving the infrastructure into the ground is SoP.
  • PeachNCream - Monday, December 9, 2019 - link

    To be completely fair to RealTek, if your company's point-of-sale hardware originally shipped with XP, writing Win10 drivers for that audio hardware was probably not high on anyone's list of priorities. For point-of-sale computers manufactured and shipped with Windows 7, that might be more of a problem given the less obsolete nature of the equipment and yes, I understand that POS systems are expected to have a long service life, but XP was first up for sale in late 2001 and extended suport ended in 2014.
  • Billy Tallis - Monday, December 9, 2019 - link

    FYI, extended support for the last POS edition of XP only ended 8 months ago.
  • PeachNCream - Tuesday, December 10, 2019 - link

    Ah thanks. I didn't realize that POS variants had a longer support lifespan.

Log in

Don't have an account? Sign up now