One of the key metrics we’ve been waiting for since AMD launched its Zen architecture was when it would re-enter the top 10 supercomputer list. The previous best AMD system, built on Opteron CPUs, was Titan, which held the #1 spot in 2012 but slowly dropped out of the top 10 by June 2019. Now, in June 2020, AMD scores a big win for its Zen 2 microarchitecture by getting to #7. But there’s a twist in this tale.

Measuring success by the TOP500 list is not so much for scoring revenue, but for scoring prestige. On the database are systems that were built over a decade ago, so a chance to put something into the list on the latest and greatest at a fraction of the size and power ends up being a big promotional opportunity for the company whose hardware is involved (as well as where it ends up being based). Obviously since AMD started introducing its new Zen-based processors, as a return to the high-end of performance after several years, we’ve been wondering how long it would take for a large scale AMD deployment.

AMD has had HPC success in the past, most notably with the Titan supercomputer, built on a mixture of Opteron 6274 CPUs paired with NVIDIA K20x accelerator cards. The machine hit #1 in 2012, and still sits at #12 today. This was a sizeable deployment, coming in at 17.6 PetaFLOPs for 8.2 MegaWatts.

Anand back in the day event went for a look around:

Inside the Titan Supercomputer: 299K AMD x86 Cores and 18.6K NVIDIA GPUs


Back in 2012

When it comes to AMD’s Zen designs, the two main CPUs we have to look for are Naples (1st Gen EPYC) and Rome (2nd Gen EPYC). That latter has been getting a lot of attention for having up to 64 high performance cores as well as a lot of memory bandwidth and heaps of connectivity for storage and add-in cards.

However, the first Zen system on the top 500 was technically neither of those.

The Hygon joint venture actually provided the first Zen based supercomputer to join the list in November 2018 at #38. This was a system built at Sugon, the company distributing the Hygon systems, to showcase the hardware. It used 5120 of the Hygon 32 core CPUs. We’ve reviewed and done a deep dive into the Hygon hardware. The Hygon joint venture has since dissolved, but the supercomputer it's based on is still running at #58.

It wasn’t until late 2019 that systems based on AMD EPYC show up. In November’s list that we saw two AMD Naples and two AMD Rome systems push AMD’s total up to six (5 based on EPYC, one on older Opterons). For the June 2020 announcement this week, another seven AMD Rome systems are in the list, making Rome the 10th most popular processor family for supercomputers. But it’s Selene at #7 that’s making the headlines.

Selene is the name of the new supercomputer sitting at #7. For host processors, it is using AMD’s Rome 7742 parts, which are the highest performing commercial parts available that aren’t for specialized markets – technically a list price of $6950 each. What makes Selene a bit odd for an AMD win is that it is part of a supercomputer built with NVIDIA A100 accelerators. And it’s also built for NVIDIA to use at NVIDIA.

When NVIDIA announced its new A100 Ampere accelerator card for compute, it also announced the concept of a DGX A100 ‘SuperPod’, connecting 140 DGX A100 nodes and 1120 A100 GPUs to supply up to 700 PetaOPs of AI-based performance. It turns out that this concept of a SuperPOD also just happens to hit #7 in the TOP500 supercomputer list, which uses more traditional LINPACK FP64 FLOPs, straight off the bat. Each of the DGX A100 nodes contains two AMD EPYC CPUs and eight A100 accelerators.

Selene scores a performance of 27.6 PetaFLOPs of FP64 throughput, for 1.3 MegaWatts of power. Compared to the previous Titan supercomputer, which had Opterons and K20x accelerators, that’s 57% more performance for only 16% of the power, making it almost 10x more efficient. Selene uses NVIDIA’s Mellanox HDR Infiniband for connectivity, and has 560 TiB of memory installed.

At launch, NVIDIA said that a DGX A100 node would cost $199k. This makes the hardware deployment for Selene (minus switches, install cost, cabling) somewhere around $28 million. It’s worth noting that this is technically only 280 EPYC CPUs paired with 1120 A100 GPUs, combined together for 277760 ‘cores’. It seems odd to suggest that 'this is all that is needed' to reach #7.

The wins for AMD on Zen are now (with Rmax):

  • #7, Selene, an EPYC 7742 + A100 system for NVIDIA (27.6 PF)
  • #30, Belenos, an EPYC 7742 system for Meteo France (7.7 PF)
  • #34, Joliot-Curie Rome, an EPYC 7H12 system for CEA in France (7.0 PF)
  • #48, Mahti, an EPYC 7H12 system for CSC in Finland (5.4 PF)
  • #56, Betzy, an EPYC 7742 system for Sigam2 AS in Norway (4.44 PF)
  • #58, PreE, a Hygon C86 system for Sugon, China (4.32 PF)
  • #124, Freeman, an EPYC 7542 system for ERDC DSRC (2.5 PF)
  • #172, Betty, an EPYC 7542 system for the US Army Research Laboratory (2.1 PF)
  • #268, Cara, an EPYC 7601 system for German Aerospace Center (1.75 PF)
  • #292, an EPYC 7501 + Vega 20system for Pukou Advanced Computing Center, China (1.66 PF)
  • #483, Spartan, an EPYC 7H12 system for Atos, France (1.26 PF)

All of which are new in the past year, except for #58 the Hygon system.

The two main upcoming supercomputers for AMD are both part of the US Exascale project.

Frontier is set to have 1.5 ExaFLOPs of EPYC and Radeon Instinct in a 30 MegaWatt design at Oak Ridge, built by Cray (HPE), for 2021.

El Capitan is set to 2.0 ExaFLOPs of EPYC and Radeon Instinct in a 30 MegaWatt design at Lawrence Livermore National Laboratory, built by Cray (HPE), for early 2023.

The other US Exascale project in the US is Aurora, with 1.0 Exaflops of Xeon and Xe, for the Argonne National Laboratories, due in late 2021.

US Department of Energy Exascale Supercomputers
  El Capitan Frontier Aurora
CPU Architecture AMD EPYC "Genoa"
(Zen 4)
AMD EPYC
(Future Zen)
Intel Xeon Scalable
GPU Architecture Radeon Instinct Radeon Instinct Intel Xe
Performance (RPEAK) 2.0 EFLOPS 1.5 EFLOPS 1 EFLOPS
Power Consumption <40MW ~30MW N/A
Nodes N/A 100 Cabinets N/A
Laboratory Lawrence Livermore Oak Ridge Argonne
Vendor Cray Cray Intel
Year 2023 2021 2021

AMD is still fervent in meeting its goal of hitting 10% market share for EPYC by the middle of the year. Given that the middle is usually somewhere in Q2/Q3, and we’re set to enter Q3, we should be hearing more about that target soon, and how COVID-19 may have adjusted those expectations.

Related Reading

 

POST A COMMENT

46 Comments

View All Comments

  • Deicidium369 - Friday, June 26, 2020 - link

    These are Nvidia DGX-A100 systems - 95% of the compute power is from the 8 to 16 Ampere A100 GPUs connected via NVSwitch. The AMD system is a traffic cop and IO - they do not provide any compute power to the mix - exactly like the Xeons were just traffic cops and IO on the previous DGX systems. Reply
  • Yojimbo - Monday, June 22, 2020 - link

    IIRC, AMD are fervent about meeting 10% market share using what Lisa Su says is the sensible metric of achieving the volume to reach 10% of what the market was predicted to be some time in the past. So, since the current market size prediction is larger than the old one, they do not expect to reach 10% of the actual market. It only makes sense if AMD's competitors are somehow benefitting from an overall demand increase that AMD are not. Reply
  • Spunjji - Friday, June 26, 2020 - link

    Makes sense to me. Counting your growth as a "failure" because you landed where you aimed to - but the target moved in ways you didn't expect at the time you took aim - isn't really a reflection of the effort put in.

    It's not the sort of thing I'd expect them to do indefinitely, but at the moment they're approaching a heavily entrenched market from what is basically a standing start.
    Reply
  • ewjop - Monday, June 22, 2020 - link

    "Now, in June 2010, AMD scores a big win for its Zen 2 microarchitecture by getting to #7. But there's a twist in this tale."

    June 2010 with Zen 2 architecture? Typo(?)
    Reply
  • ozzuneoj86 - Monday, June 22, 2020 - link

    " Now, in June 2010, AMD scores a big win for its Zen 2 microarchitecture by getting to #7. But there’s a twist in this tale."

    Typo, June 2010.
    Reply
  • boozed - Monday, June 22, 2020 - link

    "The previous best AMD system, built on Opteron CPUs, was Titan, which held the #1 spot in 2012 but slowly dropped out of the top 10 by June 2019."

    It seems surprising that it would take seven years to drop out of the top 10!
    Reply
  • yeeeeman - Tuesday, June 23, 2020 - link

    Supercomputers are not built and exchanged like socks. They are usually investments for many years, 10 years at least. Reply
  • Deicidium369 - Tuesday, June 23, 2020 - link

    US top 500 Reply
  • BenSkywalker - Monday, June 22, 2020 - link

    So this exact setup scaled up 40x should hit EFLOPS level with roughly 50 MWatts energy use. Seems like a non AI focused machine in 2023 hitting 2 EFLOPS with a 30MWatt power target should be a relatively easy target. Reply
  • nandnandnand - Monday, June 22, 2020 - link

    2021: 1.5 EFLOPs, ~30 MW. Close enough. Reply

Log in

Don't have an account? Sign up now