Final Thoughts

3D XPoint has a lot to chew on. There hasn't been an announcement this big in the memory industry since the invention of NAND in 1989 and while DRAM and NAND have improved and scaled a lot over the decades, 3D XPoint is really a new class of memory. It's fast, durable, scalable and non-volatile, whereas DRAM and NAND each only meet two of these criteria. It fills the niche between DRAM and NAND by taking the best characteristics of both technologies and creating a memory unlike anything we have seen before. 

The significance of the announcement isn't just the new memory technology, but that it's actually in production with volume shipments scheduled for next year. Intel and Micron have succeeded in bringing a concept from a lab to an actual fab, which is by far the most difficult part in any new semiconductor technology. Something that works well in a lab may not be mass producible at all, but Intel and Micron made the necessary investments to develop new material compounds and surrounding technologies to turn 3D XPoint into a real product. It will be interesting to see how the other DRAM and NAND vendors respond because the memory industry is one where you don't want your rivals to have something you don't for an extended period of time.

However, it's clear that 3D XPoint isn't a true DRAM or NAND successor and Intel and Micron aren't trying to position it as such. DRAM will still have its market in high performance applications that require the latency and endurance that 3D XPoint can't offer. Our early cost analysis also suggests that 3D XPoint isn't as dense as planar NAND, let alone 3D NAND, but by having the ability to scale both vertically and horizontally 3D XPoint may have the potential to replace 3D NAND in the long run.

Looking further into the future, 3D XPoint isn't the only technology Intel and Micron are cooking. If the two stay on schedule, we should be hearing about their other new memory technology in roughly two years. As 3D XPoint seems to be more suitable as a 3D NAND replacement, the second new technology might be one that is capable of taking DRAM's place in the long run.

All in all, it's impossible to think of all the possible applications that 3D XPoint will have in the future because it's a technology that hasn't existed before. I don't think it's an overstatement to say that 3D XPoint has the potential to change modern computer architectures and the way we see computing, but that transition won't happen overnight and will likely require competing technologies from other vendors to fulfill the demand. What is clear, though, is that Intel and Micron are leading us to a new era of memory and computing next year.

Products & Applications
Comments Locked

80 Comments

View All Comments

  • failquail - Friday, July 31, 2015 - link

    Thinking about it, wouldn't an ideal use for this sort of memory be to use it as write-cache for storage devices? Almost as fast as RAM and does not need any sort of battery backup encase of power failures. Sounds perfect :)
  • melgross - Friday, July 31, 2015 - link

    I don't agree with the assumptions in the article about how this won't be a good replacement for current SSDs, because of cost. What I see here is that the prices,for,this arrive right at the price range of current SSDs. Yes, they are higher price SSDs, but still, not higher.

    It seems that the lesson of technology is lost here. All Tech becomes cheaper. It's almost as though the writers have forgotten that the first SSDs cost $3,600 for 32GB drives. HD prices have continued to fall, but not nearly as fast as that of SSDs.

    Apple has almost all of their computers using SSDs, and that has certainly helped. They also use a major portion of the world's supply of NAND in their iOS devices. I'm not plugging Apple here, just pointing out that a major consumer company can affect usage and pricing dramatically.

    If Apple, or some other major manufacturer decides that this Tech is just what they need, and begin to use it, then prices will begin to,drop,faster than otherwise thought.

    I believe that this is a very good candidate for NAND drive substitution. And I feel as though it will begin happening more quickly than the writers here think it will.
  • Oxford Guy - Saturday, August 1, 2015 - link

    Tech becomes cheaper as volume increases and manufacturing improves but SSD NAND will also become cheaper. So it remains to be seen how well this technology will drop in comparison with SSD NAND. Many people are still using 5400 RPM hard disks in their laptops so it is also not clear if there will be anything to compel regular people into buying something faster than an SSD and a higher price.
  • abufrejoval - Friday, July 31, 2015 - link

    I believe you’re falling into a marketing trap, when you imply that 32-layer Flash has 32x the capacity of planar flash (or 48-layer 48x capacity).

    When flash vendors talk about 3D Flash layers they are actually talking about process layers and it takes about 8 of them to implement a full logical storage plane. So 32 layer NAND simply has quad planar capacity and 48 layers six times the capacity of a planar chip at the same process size.

    And since in the past 3D V-NAND was used to stay on the higher geometry node for endurance, actual capacity gain was even lower.

    Intel/Microns bending technique was another way to retain surface area at lower geometries.

    And as the V- in the V-NAND implies, you can’t stack silicon layers with complete freedom, even if processing cost were no issue. They were building terraces originally, something that the Toshiba 3D process avoids.

    Still 100 or 1000 layers won’t happen on silicon, because that’s like building a skyscraper using mud bricks.

    However, that’s not an issue with HP’s Memristor device, because that’s not a silicon process and layers of titanium dioxide can be slapped on top of each other without any crystalline alignment issues or deposition/etching limitations.

    That is one of the enduring limitations of Xpoint vs. Memristor, the fact that it seems to remain a silicon based process, which means it doesn't allow anywhere the number of layers that a non-crystalline process can do.

    And since the cost per layer is close to linear and high on silicon, that means it fails to deliver Moore's promise economically.
  • Kristian Vättö - Monday, August 3, 2015 - link

    I'm well aware that 3D NAND uses a much larger lithography and the density per layer is far from planar NAND. I apologize if it reads differently, but that was unintentional, not a praise talk for 3D NAND.

    I think 100 layers will happen given that we are already close to 50 layers, but I agree that 1,000 layers would require a more significant change to the manufacturing process and materials.
  • abufrejoval - Friday, July 31, 2015 - link

    My biggest fear with Xpoint is that Intel is attempting to create a de-facto monopoly around the NV-RAM space. They seem to have made a deal with HP for HP to delay the Memristor in return for some very favorable conditions on Xpoint, CPUs and whatever else HP needs to produce servers.

    An open price war between Memristor based and Xpoint based DDR4 DIMMs with hundreds of gigabytes if not terabyte capacity would have left half the industry bleeding to death, Intel would have lost against HP technologically, because the Memristor scales better in 3D, retains data indefinitely and has no endurance issues at all (also better latency, potentially even beating DRAM), but might have taken perhaps a little longer to get there.

    And with Intel as an enemy and HP's current financial stand, there is a good chance they would have bled out on day 1 of that war.

    So they agreed that is was better for both parties to delay the Memristor and give Intel a full run with Xpoint to recoup their investments and let HP regain some health and headstart against Lenovo, Dell and SuperMicro, who have no Memristor on the back burner to negotiate back channel rebates with Intel.

    The only problem is that even if Xpoint looks like DDR4 RAM on the memory bus, it will require wear management, special initialization etc. via a control channel like SPI and in the BIOS.

    Good luck trying to license that from Intel if you're a maker of ARM, AMD, p-Series or even z/Arch CPUs.

    Intel gave up DRAM, because it was cut-throat commodity decades ago, but these days winds up making far less money off a standard big data server than DRAM manufacturers, even after they've pushed everybody else off the motherboard (Intel may make more profit, though).

    XPoint not only gives them back the biggest slice on the server cake, and at a price they can move as close to DRAM as they want, while their production cost may actually be far lower, but it also eliminates all these pestly little ARM competitors as well as finishes big iron for once and for all for lack of a competitive memory solution.

    What was probably a smart tactical move for HP, puts the future of the IT industry at risk because Intel has years of a practical, but thanks to Micron not legal, monopoly.
  • mdriftmeyer - Saturday, August 1, 2015 - link

    Micron is on the verge of a hostile takeover of $23 Billion. This Joint Intel/Micron announcement came 3 days after that takeover bid.

    Sorry, but silicon is not the future, but the past. HP is in the driver seat with the Memristor. Once they fire Meg and hire an engineering board/ceo leveraging their IP will make Intel one unhappy camper.
  • lordken - Sunday, August 2, 2015 - link

    Unfortunately I dont see HP (ES) is firing Meg anytime soon, she is going to HP ES as CEO...So I think that best chance to stuff her off was during separation where she should rather go to HP Ink rather then ES.
    Would not hold my breath for hope that HP would get good ceo, just look on couple of recent ceos we had...
  • Michael Bay - Sunday, August 2, 2015 - link

    Memristor as technology is dead, HP is swithcing off from it. So there is no need for Intel to have any kind of dealing with them.
  • Khenglish - Saturday, August 1, 2015 - link

    I struggle to see the purpose of this memory. While flash is much slower, latency is limited by the controller. If you put this 3d XPoint memory in an SSD, you gain very little in performance since the controller was the bottleneck anyway. Flash manufacturers can get much higher performance from the memory out of a NOR design at the cost of some density, but they don't do it because again the controller is the issue. All I really see this being used for is business applications where flash memory's endurance is too low to be suitable.

    Also the term NAND only refers to the architecture of a memory system. I would not be surprised at all if 3D XPoint was also a NAND architecture. You might want to call the current tech flash or floating gate instead.

Log in

Don't have an account? Sign up now