Original Link: https://www.anandtech.com/show/1841



By now, many have heard of AGEIA and its startling announcement: they will produce a processor used exclusively to process physics related computations. Called the PPU, or Physics Processing Unit, its role will be to offload highly intensive mathematics such as realistic water movement, realistic character physical reactions to objects and the world, from the CPU to a dedicated processor. This all seems like the natural progression of things, since dedicated sound, network and other processors are commonplace.

Today, however, most processors spend their time mostly idling - you're rarely ever pushing your hardware to its limits consistently. Thus Havok, a company that's well known to game developers, has announced that it has plans to do for you what AGEIA promises, but save you money and maximize your dollar spent at the same time. Indeed, Havok has confirmed with us that they are competing with AGEIA.

The Havok FX engine is what Havok claims will provide the functionality of a PPU, but its approach is entirely different than AGEIA's. What's special about Havok FX is that it's a software engine that is currently based on Havok's widely used physics engines. However, Havok FX is designed to offload many intensive physics functions from the CPU to the GPU. Using technology available in Shader Model 3.0 and beyond, the Havok FX engine will be able to take advantage of unused resources of today's powerful GPU's and put them to use.

Many games today are intensive, but while they don't use a lot of what your graphics card is capable of doing (features, etc.), they do stress the majority of GPUs that are out there - often to their very limits. For example, a given scene can be utilizing 80% of GPU rendering resources (bus, memory bandwidth, etc.) while another scene uses 20%. How Havok aims to utilize the resources in a GPU to accelerate physics calculations remains to be seen. Havok did mention to us however, that they believe having two GPUs would be better suited to handle such duties as load balancing would be the key issue. Microsoft's Shader Model 3.0 requires compliance for full programmability, so with today's DX9 compliant GPUs, it's entirely possible for Havok FX to program a Radeon X1800 or GeForce 7800 GT (and beyond) on the fly, with specific physics processing instructions.

Havok also pointed out to us that its Havok FX engine will allow a Shader Model 3.0 compliant GPU to accelerate "game-play" physics and not only the resulting visual effects of such physics, which Havok says, AGIEA's product only does. Havok explains that its engine is able to offload such physics operations as collision detection, which on today's general purpose GPUs are very slow to compute. We spoke to Havok and they said:
"It is definitely the case that load-balancing is a key challenge for both effects physics and graphics. Enabling effects physics via the GPU offers much greater flexibility for addressing that type of problem versus a proprietary physics hardware device that will inevitably sit idle while the GPU may be overtaxed. We believe that two GPU's stand a far better chance of collaborating more effectively."
One important fact to keep in mind is that Havok is playing a significant role in the development of console technology, and has not specifically stated that the PC desktop is the ideal platform for Havok FX. Consoles have the advantage of being a closed system, in which dedicated solutions such as Havok FX will have long term applications. It will be interesting to see if Havok can achieve this and how well.

Havok's physics engines are featured in many of today's games, including F.E.A.R., Age of Empires 3, Brothers in Arms: Road to Hill 30, Halo 2 and many others. The full list can be found here on Havok's website.

Log in

Don't have an account? Sign up now