Testing Notes

For the EPYC launch, AMD sent us their best SKU: the EPYC 7601. Meanwhile Intel gave us a choice between the top bin Xeon 8180 and the Xeon 8176. Considering that the latter had 165-173W TDP, similar to AMD's best EPYC, we felt that the Xeon 8176 was the best choice. 

Unfortunately, our time testing the two platforms has been limited. In particular, we only received AMD's EPYC system last week, and the company did not put an embargo on the results. This means that we can release the data now, in time to compare it to the new Skylake-SP Xeons, however it also means that we've only had a handful of days to work with the platform before writing all of this up for today's embargo. We're confident in the data, but it means that we haven't had a chance to tease out the nuances of EPYC quite yet, and that will have to be something we get to in a future article.

Meanwhile we should note that we've had to retire the bulk of our historical benchmark data, as we upgraded both our compiler and OS (see below). Due to this, we only had a very limited amount of time to run additional systems, and for that reason we've opted include Intel's Xeon E5-2690. The Sandy Bridge-EP processor is about 5 years old, and for customers who aren't upgrading their servers every single generation, it's these servers that we believe are most likely to get upgraded in this round. So for server managers looking at finally buying into new hardware, you can get an idea of much return of investment you get. 

Benchmark Configuration and Methodology

All of our testing was conducted on Ubuntu Server "Xenial" 16.04.2 LTS (Linux kernel  4.4.0 64 bit). The compiler that ships with this distribution is GCC 5.4.0. 

You will notice that the DRAM capacity varies among our server configurations. The reason is that we had little time left before today's launch embargo. Removing any hardware is always a risk, so we decided to run our tests without significantly changing the internal hardware of the systems we received from AMD and Intel (SSDs were still replaced). As far as we know, all of our tests fit in 128 GB, so DRAM capacity should not have much influence on performance. But it wil have a impact on total energy consumption, which we will discuss. 

Last but not least, we want to note how the performance graphs have been color-coded. Orange is AMD's EPYC, dark blue is Intel's best (Skylake-SP), and light blue is the previous generation Xeons (Xeon E5-v4) . Gray has been used for the soon-to-be-replaced Xeon v1. 

Intel's Xeon "Purley" Server – S2P2SY3Q (2U Chassis)

CPU Two Intel Xeon Platinum 8176  (2.1 GHz, 28c, 38.5MB L3, 165W)
RAM 384 GB (12x32 GB) Hynix DDR4-2666
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard Intel S2600WF (Wolf Pass baseboard)
Chipset Intel Wellsburg B0
BIOS version 9/02/2017
PSU 1100W PSU (80+ Platinum)

The typical BIOS settings can be seen below; we enabled hyperthreading and Intel virtualization. 

AMD EPYC 7601 –  (2U Chassis)

Five years after our "Piledriver review", a new AMD server arrives in the Sizing Servers Lab

CPU Two EPYC 7601  (2.2 GHz, 32c, 8x8MB L3, 180W)
RAM 512 GB (16x32 GB) Samsung DDR4-2666 @2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3710 800 GB (data)
Motherboard AMD Speedway
BIOS version To check. 
PSU 1100W PSU (80+ Platinum)

 

Intel's Xeon E5 Server – S2600WT (2U Chassis)

CPU Two Intel Xeon processor E5-2699v4 (2.2 GHz, 22c, 55MB L3, 145W)
Two Intel Xeon processor E5-2690v3 (2.3 GHz, 14c, 35MB L3, 120W)
RAM 256 GB (16x16GB) Kingston DDR-2400
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard Intel Server Board Wildcat Pass
BIOS version 1/28/2016
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

The typical BIOS settings can be seen below. 

HP-G8 (2U Chassis) - Xeon E5-2690

CPU Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)
RAM 512 GB (16x32GB) Samsung DDR-3 LR-DIMM 1866 MHz @ 1333 MHz
Internal Disks SAMSUNG MZ7LM240 (bootdisk)
Intel SSD3700 800 GB (data)
Motherboard HP G8
BIOS version 9/23/2016
PSU HP 750W (Gold)

 

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) power line. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

Pricing Comparison: AMD versus Intel Memory Subsystem: Bandwidth
Comments Locked

219 Comments

View All Comments

  • TheOriginalTyan - Tuesday, July 11, 2017 - link

    Another nicely written article. This is going to be a very interesting next couple of months.
  • coder543 - Tuesday, July 11, 2017 - link

    I'm curious about the database benchmarks. It sounds like the database is tiny enough to fit into L3? That seems like a... poor benchmark. Real world databases are gigabytes _at best_, and AMD's higher DRAM bandwidth would likely play to their favor in that scenario. It would be interesting to see different sizes of transactional databases tested, as well as some NoSQL databases.
  • psychobriggsy - Tuesday, July 11, 2017 - link

    I wrote stuff about the active part of a larger database, but someone's put a terrible spam blocker on the comments system.

    Regardless, if you're buying 64C systems to run a DB on, you likely will have a dataset larger than L3, likely using a lot of the actual RAM in the system.
  • roybotnik - Wednesday, July 12, 2017 - link

    Yea... we use about 120GB of RAM on the production DB that runs our primary user-facing app. The benchmark here is useless.
  • haplo602 - Thursday, July 13, 2017 - link

    I do hope they elaborate on the DB benchmarks a bit more or do a separate article on it. Since this is a CPU article, I can see the point of using a small DB to fit into the cache, however that is useless as an actual DB test. It's more an int/IO test.

    I'd love to see a larger DB tested that can fit into the DRAM but is larger than available caches (32GB maybe ?).
  • ddriver - Tuesday, July 11, 2017 - link

    We don't care about real world workloads here. We care about making intel look good. Well... at this point it is pretty much damage control. So let's lie to people that intel is at least better in one thing.

    Let me guess, the databse size was carefully chosen to NOT fit in a ryzen module's cache, but small enough to fit in intel's monolithic die cache?

    Brought to you by the self proclaimed "Most Trusted in Tech Since 1997" LOL
  • Ian Cutress - Tuesday, July 11, 2017 - link

    I'm getting tweets saying this is a severely pro AMD piece. You are saying it's anti-AMD. ¯\_(ツ)_/¯
  • ddriver - Tuesday, July 11, 2017 - link

    Well, it is hard to please intel fanboys regardless of how much bias you give intel, considering the numbers.

    I did not see you deny my guess on the database size, so presumably it is correct then?
  • ddriver - Tuesday, July 11, 2017 - link

    In the multicore 464.h264ref test we have 2670 vs 2680 for the xeon and epyc respectively. Considering that the epyc score is mathematically higher, howdoes it yield a negative zero?

    Granted, the difference is a mere 0.3% advantage for epyc, but it is still a positive number.
  • Headley - Friday, July 14, 2017 - link

    I thought the exact same thing

Log in

Don't have an account? Sign up now