Analysis taken from our AMD Tech Day 2018 article.

AMD vs. Intel

AMD’s main target with these new processors is to offer something Intel cannot: a combined processor and graphics package. Much like a number of AMD’s previous generation of products, the focus is two-fold: offering more performance at the same price, or being cheaper at equal performance.

For the first part of that argument, about having more performance at the same price, AMD suggests the following competition for the Ryzen 5 2400G:

  • $169 Ryzen 5 2400G (4C/8T, 3.6 GHz, 704 SPs)
  • $182 Core i5-7400 (4C/4T, xxx, 24 EUs)
  • $187 Core i5-8400 (6C/6T, xxx, 24 EUs)

AMD cites that in its internal testing, the 2400G scores 20% higher than the i5-8400 on PCMark 10, and can post 1920x1080 gaming results above 49 FPS in titles such as Battlefield One, Overwatch, Rocket League, and Skyrim, having 2x to 3x higher framerates than Intel’s integrated graphics. This is a claim we can confirm in this review.

For the Ryzen 3 2200G, the competing products are less well defined:

  • $99 Ryzen 3 2200G (4C/4T, 3.5 GHz, 512 SPs)
  • $117 Core i3-8100 (4C/4T, xxx, 23 EUs)
  • $84 Pentium G4620 (2C/4T, xxx, 12 EUs)

Again, through its internal testing, AMD is stating that the 2200G scores 13% higher than the Core i3-8100 in PCMark 10, as well as being within a few frames of the Ryzen 3 2400G in titles such as Rocket League, Skyrim, and Battlefield One. We have a similar scenario tested in this review.

The other side of the argument is price for the same performance. For this comparison, AMD suggests to test the new APUs against Intel processors paired with NVIDIA graphics, specifically the GT 1030. AMD’s data suggests that a Core i5-8400 with a GT1030 scores the same as a Ryzen 5 2400G in the 3DMark TimeSpy benchmark, although costing $290 (vs $169 for the APU) and drawing 30W more power. This is a scenario we also test in this review.

AMD vs. AMD: Raven Ridge and Bristol Ridge

These two new APUs have the internal codename of ‘Raven Ridge’ to signify the family of products. AMD also has ‘Bristol Ridge’ already in the market, using the previous generation of CPU cores and previous generation of integrated graphics. AMD has not actively promoted Bristol Ridge to the public in any serious way, with these parts being hold-overs from the previous platform and designed to be a quick fill within AMD’s product line. To that effect, Bristol Ridge processors were only available for OEMs at the beginning for pre-built systems, and AMD only made them available to the public within the last few months. To our knowledge, AMD did not initiate a review sampling program to the press of these processors either.

With the launch of the two new Zen-plus-Vega Raven Ridge APUs, the Bristol Ridge processors will still continue to be sold. AMD’s reasoning revolves around offering choice in the market, particularly to its OEM customers, and has stated that the two products offer different features and is thus not competing on price. It is clear to say that for anyone buying a new system, the newest products offer the better value: a much higher per-core performance, improved thermal budgeting, newer integrated graphics, and ultimately the core design is the future of AMD. The only items that Bristol Ridge brings to the table now are the legacy aspect, to replace like-for-like, and the offer of a number of 35W-rated products. Bristol Ridge PRO processors are also on the market, offered alongside the new Ryzen PRO with Vega.

Squaring up the competing parts shows that:

Raven Ridge vs. Bristol Ridge
  Ryzen 5
2400G
A12-9800   Ryzen 3
2200G
A10-9700
Core uArch Zen Excavator   Zen Excavator
Cores/Threads 4 / 8 2 / 4   4 / 4 2 / 4
Base CPU Frequency 3.6 GHz 3.8 GHz   3.5 GHz 3.5 GHz
Turbo CPU Frequency 3.9 GHz 4.2 GHz   3.7 GHz 3.8 GHz
TDP 65 W 65 W   65 W 65 W
cTDP 46-65 W 45-65W   46-65 W 45-65W
L2 Cache 512 KB/core 1 MB/core   512 KB/core 1 MB/core
L3 Cache 4 MB -   4 MB -
Graphics Vega 11 GCN 3 Gen   Vega 8 GCN 3 Gen
Compute Units 11 CUs 8 CUs   8 CUs 6 CUs
Streaming Processors 704 SPs 512 SPs   512 SPs 384 SPs
Base GPU Frequency 1250 MHz 1108 MHz   1100 MHz 1029 MHz
DRAM Support DDR4-2933 DDR4-2400   DDR4-2933 DDR4-2400
Price $169 $99   $99 $79

Given the performance uplift we have seen from previous generation A-series processors to the Ryzen desktop parts already, the new APUs should put the nail in the coffin for older AMD parts.

Ryzen 5 2400G and Ryzen 3 2200G: The Ryzen 2000 Series Test Bed and Setup
Comments Locked

177 Comments

View All Comments

  • sonicmerlin - Tuesday, February 13, 2018 - link

    Now if only AMD had a competent GPU arch. The APU performance could be given a huge boost with Nvidia’s tech
  • dr.denton - Thursday, February 15, 2018 - link

    They do. It's called Vega. Very efficient in mid- to low range and compute, and if I'm not mistaken that's where the money is. Highend gaming is just wi**ie waving for us geeks.
  • HStewart - Tuesday, February 13, 2018 - link

    Check out performance of up and coming i8809G with Vega Graphics compare to Ryzen 7

    http://cpu.userbenchmark.com/Compare/Intel-Core-i7...

    Keep in mine this is a mobile chips - this is new mobile chips is quite powerful - I thinking of actually getting one - only big concern is compatibility with Vega chip.
  • haplo602 - Wednesday, February 14, 2018 - link

    the i8809G is a desktop chip, 100W TDP ....
  • hansmuff - Tuesday, February 13, 2018 - link

    Any idea where I could buy the MSI B350I Pro AC? I have searched every retailer I've ever bought from and can not find the damn thing. I'm hoping it can run a 2400G out of the box, at least to update to the newest BIOS.
  • Dragonstongue - Tuesday, February 13, 2018 - link

    they REALLY should not have cut back the L3 cache SO MUCH...beyond that, truly are amazing for what they are...they should have also made a higher TDP version such as 125-160w so they could cram more cpu cores or at very least a more substantial graphics portion and not limit dGPU access to 8x pci-e (from what I have read)

    Graphics cards and memory are anything but low cost.

    2200 IMO is "fine" for what it is, the 2400 should have had at least 4mb l3 cache (or more) then there should have been "enthusiast end" with the higher TDP versions so they could more or less ensure someone trying to do it "on a budget" really would not have to worry about getting anything less than (current) RX 570-580 or 1060-1070 level.

    many cpu over the years (especially when overclocked) had a 140+w TDP, they could have and should have made many steps for their Raven Ridge and not limit them so much..IMO...they could have even had a frankenstein like one that has a 6pin pci-e connector on it to feed more direct power to the chip instead of relying on the socket alone to provide all the power needed (at least more stable power)

    AM4 socket has already been up to 8 core 16 thread, and TR what 16 core 32 thread says to me the "chip size" has much more room available internally to have a bigger cpu portion and/or a far larger GPU portion, now, if they go TR4 size, TR as it is already has 1/2 of it "not used" this means they could "double up" the vega cores in it to be a very much "enthusiast grade" APU, by skimping cost on the HBM memory and relying on the system memory IMO there is a vast amount of potential performance they can capture, not to mention, properly designed, the cooling does not really become an issue (has not in the past with massive TDP cpu afterall)

    anyways..really is very amazing how much potency they managed to stuff into Raven Ridge, they IMO should not have "purposefully limited it" especially on the L3 cache amount, 2mb is very limiting as far as I am concerned especially when trying to feed 4 core 8 thread at 65w TDP alojng with the gpu portion.

    Either they are asking a bit much for the 2400g or, they are asking enough they just need to "tweak" a bit more quickly to make sure it is not bottlenecking itself for the $ they want for it ^.^

    either way, very well done....basically above Phenom II and into Core i7 level performance with 6870+ level graphics grunt using much less power...amazing job AMD...Keep it up.
  • SaturnusDK - Wednesday, February 14, 2018 - link

    Well done AMD. Well done.

    Both these APUs are extremely attractive. The R5 just screams upgradable. You get a very capable 4 core / 8 thread CPU packaged with an entry level dGPU for less than the competition charges for the CPU (with abyssmal iGPU) alone. In the current market with astronomical, even comical, dGPU prices this is a clear winner for anyone wanting to build a powerful mid-tier system but doesn't have the means to fork out ridiculous cash for higher tier dGPU now.

    The R3 scream HTPC or small gaming box. A good low end CPU paired with a bare bones but still decently performing iGPU. Add MB, RAM, PSU, and HDD/SSD and you're good to go. I imagine these will sell like hot cakes in markets with less overall GDP and in the brick'n'mortar retail market.

    The question is now. Is Intel ever going to produce a decent iGPU for the low end market? They've had plenty of time to do so but before Ryzen, AMD APUs just wasn't that attractive. Now though, you really have to think hard for a reason to justify buying a low end Intel CPU at all.
  • yhselp - Wednesday, February 14, 2018 - link

    "Now with the new Ryzen APUs, AMD has risen that low-end bar again."

    You had to do it. I understand. And thank you.
  • dr.denton - Thursday, February 15, 2018 - link

    <3
  • Hifihedgehog - Wednesday, February 14, 2018 - link

    I have been doing some digging and found that although current-generation AM4 motherboards lack formal HDMI 2.0 certification, just like many HDMI 1.4 cables will pass an HDMI 2.0 signal seamlessly without a hitch, the same appears to be the case for these boards whose HDMI traces and connectors may indeed be agnostic to the differences, if any. Could you do a quick test to see if HDMI 2.0 signals work for the Raven Ridge APUs on the AM4 motherboards you have access to? For further reference on the topic, see this forum thread “Raven Ridge HDMI 2.0 Compatibility — AM4 Motherboard Test Request Megathread” at SmallFormFactor.

Log in

Don't have an account? Sign up now