Having previously tested the IEEE 1901-implementing XAV5001 earlier this year, with much better results (both absolute and relative to prior-generation technologies) I'm admittedly baffled by its notable under-performance this time around. I'm sure I'll hear back from Netgear and/or Qualcomm soon after this writeup is published, and I'll post any notable follow-up findings.

Cautious congratulations go out to Sigma Designs, who's proven itself to me as a credible alternative supplier of HomePlug AV silicon. While the CG2110 chipset under-performed its INT6400 competitor in most of my tests, particularly in single-stream configurations, the fact remains that for many applications, its delivered bandwidth has met the 'good enough' metric.

Speaking of Sigma Designs, I continue to await adapter-based samples of the company's follow-on CG5110 chipset, which claims to comprehend both HomePlug AV and G.hn. AnandTech's Ganesh T S and I both saw demonstrations of functional silicon at January's CES; the latest word from Sigma Designs' PR contact is that "G.hn looks like Q3/4." With Q3 more than half over, the company's only got around four months to make good on its (schedule-slipped, originally targeted for March delivery) promises. I'll repeat-extend a similar invitation to Lanqiq, or for that matter any other G.hn silicon supplier; you've been highly critical of the HomePlug Powerline Alliance over the past year-plus, but it's time to put some 'steak' behind your 'sizzle' and show me what your chips can comparatively do.

Bottom line, though, I'll reiterate something I initially said earlier in this writeup: powerline networking technology has matured to an impressive degree. A few routers build powerline networking transceivers directly into their power supplies, therefore enabling voltage/current and packet transfers via a unified AC cord and outlet connection. Standalone adapter vendors should strive to further drop their prices, thereby cultivating additional demand volume, and systems suppliers should also begin to obsolete the need for standalone adapters by integrating powerline networking transceivers.

What was previously a confusing muddle of competing, incompatible pseudo-standards has finally been whittled down to two...and only one of them is shipping meaningful product volume at the moment. Pick and proceed, folks. It's time to simplify.

p.s. Fellow AnandTech staffer Ganesh just gave me a heads-up that he has a Netgear XAVB5501 two-adapter kit in-hand, with a review slated to appear in a few weeks. The XAV5501 is a three-prong powerline networking adapter which reportedly supports Qualcomm's Smart Link technology, the company's conceptual equivalent to the Sigma Designs ClearPath approach discussed in this article. Keep an eye out for Ganesh's writeup; I know I will.

UDP Testing Frustrations
Comments Locked

53 Comments

View All Comments

  • EarthwormJim - Thursday, September 1, 2011 - link

    You can typically follow other wiring in the house when retrofitting, like telephone wiring or coaxial wiring.

    Competition is probably high in my area, I often see several advertised specials from electricians specifically for cat 5 wiring.
  • bobbozzo - Thursday, September 1, 2011 - link

    If you have (wall-to-wall) carpet, it's very easy to lift up the carpet a little and run cat5 under it... I ran a 100' drop in about 15mins.

    Also, you can get baseboard or crown molding which are gapped or routed (cut out) for wires to be hidden in.
    e.g.
    http://www.curbly.com/Chrisjob/posts/3618-Hide-you...
    http://www.wiretracks.com/prod-cm.html
  • bobbozzo - Thursday, September 1, 2011 - link

    Also, my alarm guy does cat5 drops through the attic for $30 each, which is a real bargain. He drops them behind curtains, etc., instead of through the walls to a wall box.
  • bdipert - Thursday, September 1, 2011 - link

    Dear bobbozzo, thanks for writing. You do realize, thought, that the feasibility and availability of such wiring options (far from their implementation) are way beyond the comprehension of the consumer masses...right? Versus going down to a nearby consumer electronics store, buying a couple of adapters, and plugging them into power outlets? If consumer electronics manufacturers targeted only the readers (and editors ;-) ) of AnandTech, they'd be able to get away with far less consumer-friendly offerings, because the bleeding-edge early adopters here would figure 'em out anyway. But the potential customer market would be a fraction of the size, as a result.
  • bjacobson - Thursday, September 1, 2011 - link

    can you review it, too?
  • bdipert - Thursday, September 1, 2011 - link

    Glad you all seem to dig my digs. I do, too ;-)
  • bigpow - Thursday, September 1, 2011 - link

    As someone who actually makes a living testing powerline comm, I find your article to be refreshing. Had to close my eyes and bite my tongue, going through the HW section, LOL, but everything after that is quite informative.
  • fausto412 - Thursday, September 1, 2011 - link

    i've been interested in this to run my home network and hookup my PC to the net over wireless..i also have 2 to 3 TIVO's i would love to network over faster speeds than wireless which would allow me to transfer shows real time between boxes.

    anybody able to speak to the capability of these setups in the real world?
  • froob - Friday, September 2, 2011 - link

    Did you run any latency tests on these units? I'm interested to know how suitable Powerline networking would be for an Xbox 360 / PS3 etc.
  • bdipert - Friday, September 2, 2011 - link

    Dear froob,
    Yes, IxChariot logs a number of statistics, including latency, packet drop percentage, etc, I didn't explicitly create a table for latency, but you can find the data in the full report files I've archived here (as published in the 'TCP Testing Results' section of the article):

    http://images.anandtech.com/doci/4695/PowerlineBen...

Log in

Don't have an account? Sign up now