Board Features

The ASRock B550 Taichi is an ATX motherboard that is based on AMD's AM4 socket and positions itself as one of the most premium B550 models on the market. It uses a Ryzen 3000 processor to provide its PCIe 4.0 capabilities via the top full-length PCIe 4.0 x16 slot, a PCIe 4.0 x8 slot, and the top PCIe 4.0 x4 M.2 slot. The Taichi's other slots include a full-length PCIe 3.0 x4 and two PCIe 3.0 x1 slots. Located at the bottom of the board is a single PCIe 3.0 x4 M.2 slot, with plenty of SATA ports with a combined total of eight. Four of the SATA ports are driven by the chipset and support RAID 0, 1, and 10 arrays, while the other four SATA ports are controlled by an ASMedia ASM1061 SATA controller. The Taichi also has solid memory capability with support for up to DDR4-5000 memory, with a maximum capacity of up to 128 GB across four memory slots.

ASRock B550 Taichi ATX Motherboard
Warranty Period 3 Years
Product Page Link
Price $300
Size ATX
CPU Interface AM4
Chipset AMD B550
Memory Slots (DDR4) Four DDR4
Supporting 128 GB
Dual Channel
Up to DDR4-5000
Video Outputs 1 x HDMI 2.1
1 x DisplayPort 1.4
Network Connectivity Intel I225-V 2.5 GbE
Intel AX201 Wi-Fi 6
Onboard Audio Realtek ALC1220
TI NE5532 Amplifier (Front panel)
PCIe Slots for Graphics (from CPU) 1 x PCIe 4.0 x16
1 x PCIe 4.0 x8
PCIe Slots for Other (from PCH) 1 x PCIe 3.0 x4
2 x PCIe 3.0 x1
Onboard SATA Four, RAID 0/1/10 (B550)
Four (ASMedia)
Onboard M.2 1 x PCIe 4.0 x4
1 x PCIe 3.0 x4
USB 3.1 (10 Gbps) 1 x Type-A Rear Panel 
1 x Type-C Rear Panel
1 x Type-C Front Panel (ASMedia)
USB 3.0 (5 Gbps) 4 x Type-A Rear Panel
1 x Type-A Header (2 x ports)
USB 2.0 2 x Type-A Rear Panel
2 x Type-A Header (4 x ports)
Power Connectors 1 x 24-pin ATX
2 x 8pin CPU
Fan Headers 1 x CPU (4-pin)
1 x CPU/Water Pump (4-pin)
5 x System (4-pin)
IO Panel 4 x USB 3.1 G1 Type-A
1 x USB 3.1 G2 Type-A
1 x USB 3.1 G2 Type-C
2 x USB 2.0 Type-A
1 x Network RJ45 2.5 G (Intel)
5 x 3.5mm Audio Jacks (Realtek)
1 x S/PDIF Output (Realtek)
2 x Intel AX201 Antenna Ports
1 x USB BIOS Flashback Button
1 x Clear CMOS Button
1 x DisplayPort 1.4 Output
1 x HDMI 2.1 Output

The ASRock B550 Taichi has a premium networking selection that consists of an Intel I225-V 2.5 GbE Ethernet controller and an Intel AX201 Wi-Fi 6 interface which also supports BT 5.1 devices. Also located on the rear panel is one USB 3.2 G2 Type-C, one USB 3.2 G2 Type-A, four USB 3.2 G1 Type-A, and two USB 2.0 ports. Users looking for more USB connectivity can make use of the front panel headers with a single USB 3.2 G2 Type-C, two USB 3.2 G1 Type-A ports which allow for four ports, and two USB 2.0 headers which adds a further four USB 2.0 ports.

Test Bed

As per our testing policy, we take a high-end CPU suitable for the motherboard that was released during the socket’s initial launch and equip the system with a suitable amount of memory running at the processor maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

While we have been able to measure audio performance from previous Z370 motherboards, the task has been made even harder with the roll-out of the Z390 chipset and none of the boards tested so far has played ball. It seems all USB support for Windows 7 is now extinct so until we can find a reliable way of measuring audio performance on Windows 10 or until a workaround can be found, audio testing will have to be done at a later date.

Test Setup
Processor AMD Ryzen 3700X, 65W, $329 
8 Cores, 16 Threads, 3.6 GHz (4.4 GHz Turbo)
Motherboard ASRock B550 Taichi (BIOS 1.10)
Cooling ID-Cooling Auraflow 240 mm AIO
Power Supply Thermaltake Toughpower Grand 1200W Gold PSU
Memory 2x8GB G.Skill TridentZ DDR4-3200 16-16-16-36 2T
Video Card ASUS GTX 980 STRIX (1178/1279 Boost)
Hard Drive Crucial MX300 1TB
Case Open Benchtable BC1.1 (Silver)
Operating System Windows 10 1909

Readers of our motherboard review section will have noted the trend in modern motherboards to implement a form of MultiCore Enhancement / Acceleration / Turbo (read our report here) on their motherboards. This does several things, including better benchmark results at stock settings (not entirely needed if overclocking is an end-user goal) at the expense of heat and temperature. It also gives, in essence, an automatic overclock which may be against what the user wants. Our testing methodology is ‘out-of-the-box’, with the latest public BIOS installed and XMP enabled, and thus subject to the whims of this feature. It is ultimately up to the motherboard manufacturer to take this risk – and manufacturers taking risks in the setup is something they do on every product (think C-state settings, USB priority, DPC Latency / monitoring priority, overriding memory sub-timings at JEDEC). Processor speed change is part of that risk, and ultimately if no overclocking is planned, some motherboards will affect how fast that shiny new processor goes and can be an important factor in the system build.

Hardware Providers for CPU and Motherboard Reviews
Sapphire RX 460 Nitro MSI GTX 1080 Gaming X OC Crucial MX200 +
MX500 SSDs
Corsair AX860i +
AX1200i PSUs
G.Skill RipjawsV,
SniperX, FlareX
Crucial Ballistix
DDR4
Silverstone
Coolers
Silverstone
Fans

 

BIOS And Software System Performance
Comments Locked

61 Comments

View All Comments

  • Gigaplex - Saturday, August 22, 2020 - link

    I just bought a B550 motherboard. It was 30% cheaper and had features that the X570 version didn't have (eg 2.5Gbit ethernet, better accoustics due to lack of a chipset fan).
  • WaltC - Saturday, August 22, 2020 - link

    $360 x570 Aorus Master is a far better buy. BTW, I've never heard the chipset fan even once. Got a lot more features than this B550 mboard. Had my x570 AM over a year and its doing great--and I still haven't seen anything better on the market--other than the Xtreme--which for me would be overkill and cost 2x as much.
  • kkilobyte - Sunday, August 23, 2020 - link

    Except when the Aorus Master suddenly refuses to boot, requiring you to remove the CMOS battery to revive it. Which is something that happens a bit too often - and Gigabyte still unable to solve the issue.
  • Showtime - Monday, August 24, 2020 - link

    When going AMD, they get you on the motherboards. You also need more expensive ram to maximize performance. I was interested in AMD this round, but the Intel non k chips give the same,or better gaming performance, and actually come out to the same or less depending on motherboard, and ram. $200+ b series mobo's are just bad investments IMO.
  • yannigr2 - Friday, August 21, 2020 - link

    Would you please check something about B550 X570 boards?

    Here the Taichi has the option to drive both top PCIe x16 slots from the CPU. IF I am not mistaken.

    On the other hand the majority of B550 AND X570 boards seems to connect only the first PCIe x16 slot on the CPU and EVERYTHING ELSE on the chipset. Even if they have 2 or 3 PCIe x16 slots. That means that in many cases ports get disabled when other ports are populated.
  • hetzbh - Friday, August 21, 2020 - link

    No AM4 based can drive 2 PCIe X16 from the CPU (I wish..) since the Ryzen 2xxx/3xxx has 24 PCIe lanes out from the CPU. 4 goes to the chipset, 4 goes to NVME M.2, and the last 16 goes to the first PCIe slot and can be shared (X8/X8) between 2 slots, but no X16/X16.
  • yannigr2 - Friday, August 21, 2020 - link

    I wasn't talking about driving two PCIe x16 ports. I was talking about splitting those 16 lanes to a typical x8 / x8 configuration.

    While this was the obvious case in most AM3 motherboards for example, in many cases, even with x570 boards with two or three PCIe X16 slots, only the first slot is connected to the CPU. The second (and third is their is one) PCIe x16 together with the couple x1 ports are connected in the Chipset. So you read. If you connected something in the second M2, you lose that PCIe slot. If you connect something in that PCIe slot, you lose the other PCIe slot and etc.
  • yannigr2 - Friday, August 21, 2020 - link

    One example of a 570 that does this

    ASUS PRIME-X570-P
    https://www.asus.com/Motherboards/PRIME-X570-P/spe...

    1 x PCIe 4.0 x16 (x16 mode)

    AMD X570 chipset
    1 x PCIe 4.0 x16 (max at x4 mode)
    3 x PCIe 4.0 x1

    So, form the two PCIe x16, only the first is connected to the CPU. The second is connected on the chipset.

    You have a microATX motherboard disguised as a full ATX.
  • Hyoyeon - Friday, August 21, 2020 - link

    In order to bifurcate the x16, boards need some logic to mux/demux the lanes. Switching up to nearly 32 GB/s of traffic is quite hard, and so the IC's are surprisingly expensive (especially when you get into the really fast things like PCIe 5/6).
  • eddman - Saturday, August 22, 2020 - link

    That information can be gathered from the product's page on their website. The following is from this board's page:

    "single at Gen4x16 (PCIE1)
    dual at Gen4x8 (PCIE1) / Gen4x8 (PCIE3)
    triple at Gen4x8 (PCIE1) / Gen4x8 (PCIE3) / Gen3x4 (PCIE5)"

    They don't specifically mention exactly which slot is connected to what, but from the above info it's apparent that the first two x16 slots are connected to the processor, because the lanes are split when two cards are inserted. The third slot is obviously connected to the chipset.

    The Asus example you posted below clearly states the second slot is connected to the chipset.

Log in

Don't have an account? Sign up now